منابع مشابه
$sigma$-Connes Amenability and Pseudo-(Connes) Amenability of Beurling Algebras
In this paper, pseudo-amenability and pseudo-Connes amenability of weighted semigroup algebra $ell^1(S,omega)$ are studied. It is proved that pseudo-Connes amenability and pseudo-amenability of weighted group algebra $ell^1(G,omega)$ are the same. Examples are given to show that the class of $sigma$-Connes amenable dual Banach algebras is larger than that of Connes amenable dual Banach algebras.
متن کاملOn the Beurling Algebras A+α(d)—derivations and Extensions
Based on a description of the squares of cofinite primary ideals of A + α (D), we prove the following results: for α ≥ 1, there exists a derivation from A + α (D) into a finite-dimensional module such that this derivation is unbounded on every dense subalgebra; for m ∈ N and α ∈ [m, m + 1), every finite-dimensional extension of A + α (D) splits algebraically if and only if α ≥ m + 1/2.
متن کاملWeak Amenability and 2-weak Amenability of Beurling Algebras
Let Lω(G) be a Beurling algebra on a locally compact abelian group G. We look for general conditions on the weight which allows the vanishing of continuous derivations of Lω(G). This leads us to introducing vector-valued Beurling algebras and considering the translation of operators on them. This is then used to connect the augmentation ideal to the behavior of derivation space. We apply these ...
متن کاملM-IDEAL STRUCTURE IN UNIFORM ALGEBRAS
It is proved that if A is aregular uniform algebra on a compact Hausdorff space X in which every closed ideal is an M-ideal, then A = C(X).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2004
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm160-2-5